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Background

This paper is about combining information from Dynamic Networks
to inform the causal structure of Structural Vector Autoregressions

The paper discusses using networks for estimating both structural and
autoregressive coefficients, but my focus will be on the structural
components (the autoregressive ones are easier)
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Background: What is a SVAR?

Consider the structural VAR(L) process:

Yt = B0Yt + B1Yt−1 + · · ·+ BLYt−L + εt

Where εt ∼ N(0, Ip), and B0 has 0s on the diagonal

Rewriting the SVAR into a reduced-form VAR:

Yt = A−10 B1Yt−1 + A−10 B2Yt−2 + . . .A−10 BLYt−L + A−10 εt

where A0 = I− B0

The problem is that the structural parameter, A0 is not identified.
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Background: Identification Issue

Yt = A−10 B1Yt−1 + A−10 B2Yt−2 + . . .A−10 BLYt−L + A−10 εt

Observe that A−10 A−1
′

0 is the covariance of the error term.

But, for any orthogonal matrix Q (so QQ ′ = I ),

A−10 A−1
′

0 = A−10 QQ ′A−1
′

0 = (A−10 Q)(A0Q)′

So the structural parameters, A0 are not identified

I Requires making some identification assumptions to perform structural
analysis
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Background: Directed Acyclic Graphs

A Directed Acyclic Graph is a collection G = {V, E}, where V is the
set of vertices and E is the set of edges.
For example:

Figure 1 : DAG from Grzegorcyzk (2001)

In this graph, node A is the parent of B and C. B and C are child
nodes of A. D is the child node of both B and C, and E is the child
node of E.

A graph is said to be acyclic if no node is a descendant of itself
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Connecting DAG and SVAR

Yt = B0Yt + B1Yt−1 + · · ·+ BLYt−L + εt

Then, there is a one-to-one relationship between the regression
matrices and Directed Acyclic Graphs, given as:

X j
t−s → X i

t ⇐⇒ Bs(i , j) 6= 0

Where X j
t−s → X i

t means that X j
t−s ”causes” in some way, X i

t .

I Note that despite the directed aspect, the assumption of causality is
not totally innocuous

I Think about a stock market ascent that may lead to an increase in
GDP. The stock market may not cause GDP to increase, it could
merely lead it in time.

I For more information, see Dawid 2008

This is similar to the notion of Granger Causality (with the exception
of contemporaneous causation and conditional independence)

Presented by: Jacob Warren Bayesian Graphical Models for Structural Vector Autoregressive ProcessesMarch 21, 2015 6 / 1



Connecting DAG and SVAR

Yt = B0Yt + B1Yt−1 + · · ·+ BLYt−L + εt

Then, there is a one-to-one relationship between the regression
matrices and Directed Acyclic Graphs, given as:

X j
t−s → X i

t ⇐⇒ Bs(i , j) 6= 0

Where X j
t−s → X i

t means that X j
t−s ”causes” in some way, X i

t .
I Note that despite the directed aspect, the assumption of causality is

not totally innocuous
I Think about a stock market ascent that may lead to an increase in

GDP. The stock market may not cause GDP to increase, it could
merely lead it in time.

I For more information, see Dawid 2008

This is similar to the notion of Granger Causality (with the exception
of contemporaneous causation and conditional independence)

Presented by: Jacob Warren Bayesian Graphical Models for Structural Vector Autoregressive ProcessesMarch 21, 2015 6 / 1



DAG and Cholesky

One identification of the orthogonal shocks in the VAR is to use a
Cholesky Decomposition

PP ′ = A−10 A−1
′

0

Acyclicality implies a specific ordering of variables

For example, if X1 → X2, then let X1 be the first variable in the
system, and X2 the second
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Local Markov Property

A graph is said to be posses the Local Markov Property if

P(X1,X2, . . .Xn) =
N∏
i=1

P(Xi |pa(Xi ))

where pa(Xi ) is the set of parent nodes for node Xi

In the example above, the full likelihood of the graph can be
simplified into:

P(G ) = P(A)P(B|A)P(C |A)P(D|{B,C})P(E |D)
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Estimation

Define B?
s = Gs ◦ Φs , 0 ≤ s ≤ p, where ◦ is the Hadamarad

element-wise matrix multiplication, and Φs are the reduced form
parameters

Gs are connectivity matrices that indicates dependence

Thus, the reduced form parameters of the VAR can be written as:

A0 = I − G0 ◦ Φ0

Ai = (I − G0 ◦ Φ0)−1(Gi ◦ Φi )
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Estimation: Bayesian Paradigm (priors)

Yt = B?
0Yt + B?

1Yt−1 + · · ·+ B?
LYt−L + εt , εt ∼ N(0, I )

Likelihood:
I The data matrix, X ∼ N(0,Σx)

Prior:
I Define the probability distribution over a graph as:

P(G,Θ) = P(G)P(Θ|G)

Where G is the set of graph structures (nodes, edges and directions),
and Θ is the set of parameters.

I P(G ) ∝ 1
I Bi are distributed normally
I Conditional on a complete graph, P(Σ|G ) ∼ IW

Note: This seems a little strange, since they have not specified a prior on
the covariance except conditional on a complete graph. If the graph is not
complete, the covariance will not be IW distributed
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Marginal Likelihood

The marginal likelihood can be factorized

P(X|G ) =

∫
P(X|G ,Σx)P(Σx |G )dΣx

Under the assumed likelihood/priors, the marginal likelihood has a
closed form

They estimate a Multivariate-Normal-Inverse-Wishart process and a
Minnesota Prior process
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Model Inference

Since everything has closed forms, they implement the following
Gibbs Sampler:

1 Sample the graph from the conditional posterior using Metropolis
Hastings

2 Sample the reduced form parameters directly from their posterior
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Simulations

They compare their scheme to a competitor (the PC algorithm)

They find that their model does about 10% better for a small-scale
VAR (n=5), but comparably well in a larger system (n=10)

An additional advantage of their model over the PC algorithm is that
they can do prediction
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Macroeconomic Time Series application

Macro-forecasting based on medium size (n=20) VARs

Dataset is quarterly observations from 1959Q1-2008Q4

Rolling windows of 14 years are used to estimate the model
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Goodness of Fit
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”Big” Data Implications

It is hard to tell, but it seems like this estimation is extremely
computationally intensive

I Calculating the contemporaneous dependencies are limited to 5-7
variables

I Time series are limited to to ∼ 50 observations

They also apply their process to 19 financial sectors to estimate
financial interconnectedness, but only estimate the autoregressive
component
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Comments

This paper was overall very good

Concise, Bayesian method for estimating structural parameters of an
SVAR

However, they do not tie their results into cholesky factorization or
SVAR identification at the end

I Should we do impulse responses with their method or others?

Can the efficiency of the inference scheme be improved
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